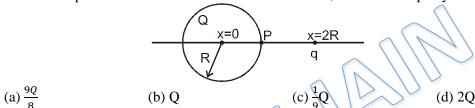


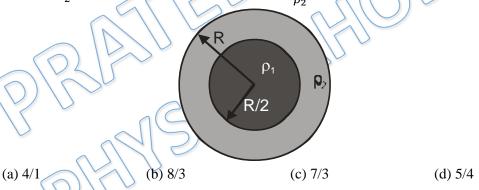
DPP - 6 (Electrostatics)

Video Solution on Website:-

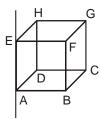
https://physicsaholics.com/home/courseDetails/93


Video Solution on YouTube:-

https://youtu.be/2BzlopVh9C8


Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39


Q 1. A sphere of radius R contains a total charge +Q which is uniformly distributed throughout its volume. At a distance 2R from the centre of sphere, a particle having charge +q is fixed. P is a point on surface of sphere and lying on line joining the centre of sphere and point charge. Distance of point from P where net electric field is zero, is R/2. Then q may be

Q 2. Consider a solid non conducting sphere of radius R. There is uniform volume charge density ρ_1 from r = 0 to $r = \frac{R}{2}$, and from $r = \frac{R}{2}$ and r = R, the volume charge density is ρ_2 . If electric field at $r = \frac{R}{2}$ and r = R have same magnitude then $\frac{\rho_1}{2}$ is:

Q 3. An infinite long line charge of charge per unit length l is passing through one the edge of a cube. Length of edge of the cube is l. Total flux linked with

- (a) cube is $\frac{\lambda \ell}{2\varepsilon_0}$
- (b) cube is $\frac{\lambda \ell}{4\varepsilon_0}$
- (c) BCGF is $\frac{\lambda \ell}{8\varepsilon_0}$
- (d) ABFE is zero
- Q 4. Two point charges 4q and -q are placed at some distance. What fraction of field lines originating from 4q will terminate to q.[Assume absence of any other charge in space]

P hysicsaholics

(a) 1/4

(b)3/4

(c) 1

 $(d) \frac{1}{2}$

Q 5. Consider a triangular surface whose vertices are three points having co-ordinate A (2a, 0, 0), B(0, a, 0), C(0, 0, a). If there is a uniform electric field $E_0\hat{\imath} + 2E_0\hat{\jmath} + 3E_0\hat{k}$ then flux linked to triangular surface ABC is-

(a) $\frac{7E_0a^2}{2}$

(b) $3E_0a^2$

(c) $\frac{11E_0a^2}{2}$

(d) Zero

Q 6. A cylinder of radius (R) and length (L) is placed in a uniform electrical field (E) parallel to the axis of the cylinder. The total flux for the surface of the cylinder is given by –

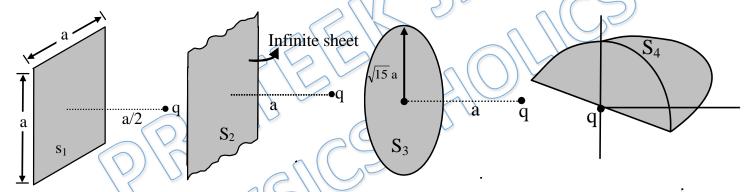
(a) $2\pi R^2 E$

(b) $\pi R^2 E$

 $(c) \frac{\pi R^2 + \pi R^2}{E}$

(d) zero

Q 7. A hemisphere (radius R) is placed in electric field as shown in fig. Total outgoing flux is –


(a) $\pi R^2 E$

(b) $2\pi R^2 E$

(c) $4\pi R^2 E$

(d) $(\pi R^2 E)/2$

Q 8. Consider the imaginary surfaces S₁, S₂, S₃ and S₄ drawn near a point charge as shown in fig.

Column I give different surfaces and Column II corresponding electric flux. Match the entries of Column I to Column II.

Column I

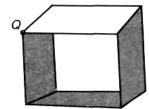
(A) S₁

(

(B) S_2

 $(Q)\frac{q}{2\varepsilon_0}$

Column II


 $(C) S_3$

 $(R) \frac{q}{6\varepsilon_0}$

(D) S_4

 $(S) \frac{q}{4\varepsilon_0}$

Q 9. If a point charge is placed at vertex of cube then flux linked to surface shaded in figure

(a) $\frac{q}{8\varepsilon_0}$

(b) $\frac{q}{3\varepsilon_0}$

(c) $\frac{q}{12\varepsilon_0}$

(d) Zero

Physicsaholics

- Q 10. In a region of space, the electric field is in the x-direction and proportional to x, i.e., $\vec{E} = E_0 x \hat{\imath}$. Consider an imaginary cubical volume of edge a, with its edges parallel to the axes of coordinates. The charge inside this volume is
 - (a) zero
- (b) $\varepsilon_0 E_0 a^3$
- $(c)\frac{1}{\varepsilon_0}E_0a^3$
- $(d) \frac{1}{6} \epsilon_0 E_0 a^2$
- Q 11. Charges Q_1 and Q_2 are inside and outside respectively of a closed surface S. Let E be the field at any point on S and ϕ be the flux of E over S. Then choose the correct statements
 - (a) if Q_1 changes both and E and ϕ will change
 - (b) if Q_2 changes, E will change but ϕ will not change
 - (c) if $Q_1 = 0$ and $Q_2 = 0$, then $E \neq 0$ but $\phi = 0$
 - (d) if $Q_1 = 0$ and $Q_2 = 0$, then E = 0 and $\phi = 0$
- Q 12. In a spherical volume of radius R , volume charge density $\rho = r^3$ (where r is distance from centre). Electric Field at distance r (r < R) from centre is
 - (a) $\frac{r^4}{5\varepsilon_0}$
- (b) $\frac{r^4}{4\varepsilon_0}$
- $(c)\frac{r^4}{6\varepsilon_0}$
- (d) $\frac{r^4}{3\varepsilon_0}$
- Q 13. In a nonuniformly charged solid sphere of radius R electric field at distance r from centre is E = r^2 in radially outward direction. Charge density at distance r from centre (r < R) is
 - (a) $\varepsilon_0 r$
- (b) $4\varepsilon_0 r$
- (c) $2\varepsilon_0$
- (d) $\varepsilon_0 r^2$

Q.1 a, c	Q.2 c	Q.3 b, c, d Q.4 a	Q.5 c
Q.6 d	Q.7 a	Q.9 c Q.10 b	Q.11 a, b, d
Q.12 c	Q.13 b		

$$Q.8 A \rightarrow R; B \rightarrow Q; C \rightarrow P; D \rightarrow S$$