DPP - 6 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93
Video Solution on YouTube:- https://youtu.be/2BzlopVh9C8

Written Solution on Website:-

Q 1. A sphere of radius R contains a total charge $+Q$ which is uniformly distributed throughout its volume. At a distance $2 R$ from the centre of sphere, a particle having charge $+q$ is fixed. P is a point on surface of sphere and lying on line joining the centre of sphere and point charge. Distance of point from P where net electric field is zero, is $\mathrm{R} / 2$. Then q may be

(a) $\frac{9 Q}{8}$
(b) Q
(c) $\frac{1}{9} Q$
(d) 2 Q

Q 2. Consider a solid non conducting sphere of radius R. There is uniform volume charge density ρ_{1} from $\mathrm{r}=0$ to $\mathrm{r}=\frac{R}{2}$, and from $\mathrm{r}=\frac{R}{2}$ and $\mathrm{r}=\mathrm{R}$, the volume charge density is ρ_{2}. If electric field at $\mathrm{r}=\frac{R}{2}$ and $\mathrm{r}=\mathrm{R}$ have same magnitude then $\frac{\rho_{1}}{\rho_{2}}$ is :

(a) $4 / 1$
(b) $8 / 3$
(c) $7 / 3$
(d) $5 / 4$

Q 3. An infinite long line charge of charge per unit length 1 is passing through one the edge of a cube. Length of edge of the cube is 1 . Total flux linked with

(a) cube is $\frac{\lambda \ell}{2 \varepsilon_{0}}$
(b) cube is $\frac{\lambda \ell}{4 \varepsilon_{0}}$
(c) BCGF is $\frac{\lambda \ell}{8 \varepsilon_{0}}$
(d) ABFE is zero

Q 4. Two point charges $4 q$ and $-q$ are placed at some distance. What fraction of field lines originating from 4 q will terminate to q .[Assume absence of any other charge in space]

(a) $1 / 4$
(b) $3 / 4$
(c) 1
(d) $1 / 2$

Q 5. Consider a triangular surface whose vertices are three points having co-ordinate $A(2 a, 0,0)$, $\mathrm{B}(0, \mathrm{a}, 0), \mathrm{C}(0,0, \mathrm{a})$. If there is a uniform electric field $E_{0} \hat{\imath}+2 E_{0} \hat{\jmath}+3 E_{0} \hat{k}$ then flux linked to triangular surface ABC is-
(a) $\frac{7 E_{0} a^{2}}{2}$
(b) $3 \mathrm{E}_{0} \mathrm{a}^{2}$
(c) $\frac{11 E_{0} a^{2}}{2}$
(d) Zero

Q 6. A cylinder of radius (R) and length (L) is placed in a uniform electrical field (E) parallel to the axis of the cylinder. The total flux for the surface of the cylinder is given by -
(a) $2 \pi R^{2} E$
(b) $\pi R^{2} E$
(c) $\frac{\pi R^{2}+\pi R^{2}}{E}$
(d) zero

Q 7. A hemisphere (radius R) is placed in electric field as shown in fig. Total outgoing flux is -

(a) $\pi R^{2} E$
(b) $2 \pi R^{2} E$
(c) $4 \pi R^{2} E$
(d) $\left(\pi R^{2} E\right) / 2$

Q 8. Consider the imaginary surfaces S_{1}, S_{2}, S_{3} and S_{4} drawn near a point charge as shown in fig.

Column I give different surfaces and Column II corresponding electric flux. Match the entries of Column I to Column II.

Column I

(A) S_{1}
(B) S_{2}
(C) S_{3}
(D) S_{4}

Column II

(P) $\frac{3 q}{8 \varepsilon_{0}}$
(Q) $\frac{q}{2 \varepsilon_{0}}$
(R) $\frac{q}{6 \varepsilon_{0}}$
(S) $\frac{q}{4 \varepsilon_{0}}$

Q 9. If a point charge is placed at vertex of cube then flux linked to surface shaded in figure

(a) $\frac{q}{8 \varepsilon_{0}}$
(b) $\frac{q}{3 \varepsilon_{0}}$
(c) $\frac{q}{12 \varepsilon_{0}}$
(d) Zero

Q 10. In a region of space, the electric field is in the x-direction and proportional to x, i.e., $\vec{E}=$ $E_{0} x \hat{\imath}$. Consider an imaginary cubical volume of edge a, with its edges parallel to the axes of coordinates. The charge inside this volume is
(a) zero
(b) $\varepsilon_{0} \mathrm{E}_{0} \mathrm{a}^{3}$
(c) $\frac{1}{\varepsilon_{0}} \mathrm{E}_{0} \mathrm{a}^{3}$
(d) $\frac{1}{6} \varepsilon_{0} \mathrm{E}_{0} \mathrm{a}^{2}$

Q 11. Charges Q_{1} and Q_{2} are inside and outside respectively of a closed surface S. Let E be the field at any point on S and ϕ be the flux of E over S. Then choose the correct statements
(a) if Q_{1} changes both and E and ϕ will change
(b) if Q_{2} changes, E will change but ϕ will not change
(c) if $Q_{1}=0$ and $Q_{2}=0$, then $E \neq 0$ but $\phi=0$
(d) if $Q_{1}=0$ and $Q_{2}=0$, then $E=0$ and $\phi=0$

Q 12. In a spherical volume of radius R , volume charge density $\rho=r^{3}$ (where r is distance from centre). Electric Field at distance $\mathrm{r}(\mathrm{r}<\mathrm{R})$ from centre is
(a) $\frac{r^{4}}{5 \varepsilon_{0}}$
(b) $\frac{r^{4}}{4 \varepsilon_{0}}$
(c) $\frac{r^{4}}{6 \varepsilon_{0}}$
(d) $\frac{r^{4}}{3 \varepsilon_{0}}$

Q 13. In a nonuniformly charged solid sphere of radius R electric field at distance r from centre is E $=r^{2}$ in radially outward direction. Charge density at distance x from centre $(\mathrm{r}<\mathrm{R})$ is
(a) $\varepsilon_{0} r$
(b) $4 \varepsilon_{0} r$
(c) $2 \varepsilon_{0}$
(d) $\varepsilon_{0} r^{2}$

Answer Key

Q. 1 a, c	Q. 2 c	Q. $3 \mathrm{b,c}$, d	Q. 4 a	Q. 5 c
Q. 6 d	Q. 7 a	Q. 9 c	Q. 10 b	Q. $11 \mathrm{a}, \mathrm{b}, \mathrm{d}$
Q. 12 c	Q. 13 b			

$$
\mathbf{Q} .8 \mathbf{A} \rightarrow \mathbf{R} ; \mathbf{B} \rightarrow \mathbf{Q} ; \mathbf{C} \rightarrow \mathbf{P} ; \mathbf{D} \rightarrow \mathbf{S}
$$

